The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
The Hive Wireless sensor network project designed and assembled automatic weather stations that are currently installed at Kongsvegen glacier in Svalbard and records near surface meteorological variables: air temperature, relative humidity, air pressure, snow height, wind, surface skin temperature... The HiveWSN kit consists of: 1) a brain box containing the power system, the microcontroller, the communication system and the connectivity to the sensors, 2) A set of sensors either commercially available or custom built at the Department of Geosciences at UiO as part of the UiO Hive project. The kit is autonomous and packaged as a beam that can be installed on simple mast. Currently, there are two versions of the WSN system: v1 from 2019, and v2 from 2021. Both are based on the board Wasmpote v15 which handle power, communication, and data brokerage. The firmware running all instances has been written as part of the project UiO Hive, and include a set of tools described on the HiveWSN project website: https://www.mn.uio.no/geo/english/research/projects/hive. Important note: the height of the sensor to the snow/ice surface is not corrected for variations in surface deposition or melt over time. The sensor box is fixed to a stake drilled into the snow/ice.
This data set contains 2-m resolution DEM composites and a DEM difference map over the Chamoli disaster area in Uttarakhand, India, where on 7 February 2021 a glacier burst led to a massive flood. These post-event DEMs were constructed from monoscopic Maxar/DigitalGlobe WorldView-2, WorldView-3, and GeoEye-1 images acquired on 10 February 2021 and 11 February 2021, and one DEM was generated from Pléiades-HR1B in-track stereo images acquired on 10 February 2021. The DEM difference map was created from the September 2015 weighted-mean DEM composite and the 10-11 February 2021 weighted-mean DEM composite.
The September 2015 pre-event DEM is available as a separate data set (https://nsidc.org/data/HMA2_CPRE).